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ABSTRACT
Web applications are crucial infrastructures in the modern society,
which have high demand of reliability and security. However, their
frontend can be manipulable by the clients (e.g., the frontend code
can be modified to bypass some validation steps), which incurs
the runtime anomaly when operating the web service. Existing
state-of-the-art anomaly detectors largely learn a deep learning
model from the collected logs to predict abnormal logs with a
probability. While effective in general, those approaches can suffer
from (1) inaccuracy caused by subtle difference between the normal
and abnormal/attack logs and (2) additional efforts for root cause
analysis.

In this work, we propose WebNorm, an anomaly detection ap-
proach to detect and explain the attack-caused anomalies on web
applications in a unified way. Our rationale lies in learning the
behaviorial normalities of a running web application as invariants.
The normalities are designed regarding data normality (e.g., what
information must be consistent across different events), flow nor-
mality (e.g., what events must happen under certain circumstances),
and common-sense normality (e.g., what is the normal range of
some parameters). The violation of the invariants indicates both
the alarm and its explanation. WebNorm first monitors the normal
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behaviors of subject application and captures its information flows
between entities such as frontend, service, and database. Then, it
learns the behaviorial normalities in terms of logical rules so that
it can detect and explain behaviorial anomaly by the inconsistency
between the learned normalities and the runtime application be-
haviors. We model the invariants as first-order logics, transferrable
to executable Python scripts to generate alarm with explainable
root cause. Our extensive experiment shows that, on detecting the
tamper attacks on the web applications as TrainTicket and NiceFish.
WebNorm improves the precision and the recall of the baselines
such as LogAnomaly, LogRobust, DeepLog, NeuralLog, PLELog,
ReplicaWatcher by more than 56.1% and 35.1% respectively, serving
as a new state-of-the-art anomaly detection solution.
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1 INTRODUCTION
Recent years have seen that the web applications have played an
important role in building various modern infrastructure such as
government, bank, hospital, and even military applications [13,
14, 34, 39, 44], which has incurred a high demand of security and
stability of their services. Any of their functional bugs and security
vulnerabilities can cause tremendous loss of the business owners
such as governments and banks.

A web application typically consists of a frontend (running in
a client browser) and a backend (running in a server). Once it is
delivered to the public, curious and knowledgeable users (or at-
tackers) can comprehend, explore, and modify the frontend code,
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potentially tampering the business logics of the web application
in an unexpected way. For example, a blog [36] has discovered
that Vistara Airlines suffered from payment bypass attacks where
an attacker can manipulate input parameters to bypass the pay-
ment stage and obtain free goods or services. Those (even failed)
explorative code-tampering behaviors are valuable for the service
operators to (1) understand the potential vulnerability of the ap-
plication and (2) be aware of whether and how the application is
under exploitation. Since the frontend code can be tampered in a
variety of ways, it leaves the runtime log analysis in the backend
as an anomaly detection problem in DevOps.

Existing approaches adopt the state-of-the-art log analytic ap-
proach to monitoring and detecting the potential anomalies of the
web applications. Practical industrial solutions such as Splunk [9],
Elastic Stack [11] and IBMQRadar [18] report the anomaly based on
their predefined and customized rules (e.g., based on HTTP status,
log keywords, and statistical deviation). To capture abnormality in
an automatic way, many researchers adopt deep-learning based so-
lutions such as deep (graph) neural network models [10, 16, 29, 53]
to learn the abnormal logs by preparing a training dataset in an
either supervised or unsupervised ways. While existing solutions
could be effective in a way, they are particularly struggling in de-
tecting such tamper-attack-triggered anomalies:

• C1 (Subtle change of abnormality): First, unprecedented at-
tacks can cause the generated logs change in a very subtle way,
which can be easily ignored by traditional solutions. Given that
the frontend code can be tampered in an unexpectedway, it leaves
great challenges to decide the granularity of the log features (e.g.,
tokenization [26], normalization [8], and word embedding [46]).
Consequently, discriminative information could be abstracted
away, or noisy information could be learned, resulting in an
overfitting model.
• C2 (Distribution-shift): Second, the explorative code tampering
behaviors can be evolving. Thus, it incurs challenges to collect
new datasets to update the learned model. The challenge is par-
ticularly large for collecting those false-negative logs.
• C3 (Explainability): Finally, the state-of-the-art deep learning
models usually project a sequence of log into a suspiciousness
score, leaving the programmers and application operators large
efforts to apply the post-mortem analysis to pinpoint the root
cause to make a timely counter-measure.

In this work, we propose, WebNorm, an LLM-based anomaly
detection approach for web applications to detect and explain such
tamper attack-triggered anomalies in an unified way. Our approach
assumes that (1) any web applications need to be tested before their
deployment and (2) the normality of the application is much more
stable than its novel attack. Thus, we collect the runtime logs of a
target application in the testing-stage and construct their behavioral
normalities in the form of first-order logic. The normalities are
designed regarding data normality (e.g., what information shall
be consistent across different events), flow normality (e.g., what
events shall happen under certain circumstances), and common-
sense normality (e.g., what is the normal range of some parameter).
For example, WebNorm can infer an invariant that “the price of an
item retrieved from the database should be consistent with the price
passed from the front end”. Any violation of the invariant (e.g., the

price tampered in the frontend code) can raise an alarm with an
explanation (e.g., the price inconsistency in this case).

Technically, WebNorm interleaves between the program anal-
ysis, log analysis, and LLM interaction to build the invariants, by
capturing the information flows between entities such as frontend,
service, and database in the web application. WebNorm maps the
bankend code to its generated logs, to address the long-context
problem, in comparison to purely inferring the logs. Note that,
there can be hundreds (if not thousands) of logs in between the
log to retrieve data (e.g., price) from the database and the log to
receive relevant data from the frontend. Then, WebNorm interacts
with LLM to identify the potential entities in the log to build consis-
tency relation. Those invariants are learned as consistency-based
rules, translated to executable Python scripts, to check against the
collected raw logs to capture any subtle behaviorial changes.

We construct the extensive facilities for our evaluation on Web-
Norm on the state-of-the-art benchmark as TrainTicket [54] and
NiceFish [37]:

• Seeding/Testing Scenarios: A set of pre-defined seeds (i.e.,
normal scenarios) in addition to Industry Fault in the benchmark
for building our reference behavioral model.
• Abnormal Scenarios: An attack toolkit towards the TrainTicket
and NiceFish benchmark, called TT-Attack dataset, consisting of
more than 40 types of tamper attacks.

We evaluate the performance of WebNorm by comparing it with
the state-of-the-art baselines such as LogAnomaly [35], LogRobust
[52], DeepLog [10], NeuralLog [26], PLELog [49], ReplicaWatcher
[21], regarding their precision, recall, and F1-score. The results
show that (1) WebNorm exhibits significant improvement over the
baseline by 56.1% increase in precision and 35.1% increase in recall
over the state of the art methods at reasonable cost of runtime
overhead, (2) WebNorm achieves the explanation accuracy of 92.3%,
demonstrating its effectiveness for root cause analysis, and (3) the
precision of WebNorm can be robust against the perturbation of the
number of seeding scenarios and its recall can be largely preserved
when the seeding scenarios can achieve a minimum coverage of
50% of the system.

In summary, we make the following contributions:

• We propose, WebNorm, a solution for detecting and explaining
the tamper-attack triggered anomalies of a web application, by
addressing the challenge of subtle changes of abnormalities and
explainability. WebNorm learns the invariants on raw logs as
consistency rules (i.e., data consistency, flow consistency, and
common-sense consistency) in the form of first-order logics. Any
violation of the invariant indicates both the alarm and the expla-
nation.
• We make a comprehensive evaluation upon the state-of-the-art
TrainTicket and NiceFish benchmark. We identify more than 40
types of tamper attack towards the benchmark based on its vul-
nerability, which can lay a foundation for the follow-up anomaly
detection in the community.
• We deliver WebNorm as a tool, deployable to help the practi-
tioner identify the root cause in practice. A tool demonstration
is available at [38].
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function rebook (…) {
…
PostAjaxRequest("/api/v1/rebookservice/rebook",
rebookInfo, function(res) {
if (res.data[‘differenceMoney'] == 0) {

updateOrder (rebookInfo);
} else {

// pay extra price
PostAjaxRequest(“/api/

v1/rebookservice/paydifference”,
res.data[‘differenceMoney’],
function(res) {

updateOrder (rebookInfo)    
}

);
…

}
});

line 8 -> res.data[‘differenceMoney’] = 0

1

Normal Scenario 

"2024-06-03 16:55:13.475 INFO 1 --- [http-
nio-18673-exec-4] i.s.LoggingAspect: Entering 
in Method: Entering in Method: payDifference, 
Class: 
inside_payment.service.InsidePaymentService
Impl, Arguments: [price=27.5, …]"

2024-06-03 18:50:40.085 INFO   1 --- [http-
nio-18886-exec-10] r.s.LoggingAspect: 
Entering in Method: updateOrder, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId= 9115, …, 
status=3,price=27.5)]"

"2024-06-03 15:55:00.115 INFO 1 --- [http-
nio-18886-exec-10] Entering in Method: 
rebook, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId=9115, 
oldTripId=D1345, tripId=D1345, …, status=1,
orderMoneyDifference=27.5)]"

Abnormal Scenario 1
(Tamper Data Consistency) 

Abnormal Scenario 2
(Tamper Flow Consistency) 

line 5 -> res.data[‘differenceMoney’] != 0

1

2

3

1 Load extra price from backend （B à F）
2 Pay extra price （F à B）
3 Update the payment record （F à B）

Other logs… …

Backend Logs

(Manipulable) Frontend Code

2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

"2024-06-03 16:55:13.475 INFO 1 --- [http-
nio-18673-exec-4] i.s.LoggingAspect: Entering 
in Method: Entering in Method: payDifference, 
Class: 
inside_payment.service.InsidePaymentService
Impl, Arguments: [price=0, …]"

2024-06-03 18:50:40.085 INFO   1 --- [http-
nio-18886-exec-10] r.s.LoggingAspect: 
Entering in Method: updateOrder, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId= 9115, …, 
status=3,price=0)]"

"2024-06-03 15:55:00.115 INFO 1 --- [http-
nio-18886-exec-10] Entering in Method: 
rebook, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId=9115, 
oldTripId=D1345, tripId=D1345, …, status=1,
orderMoneyDifference=27.5)]"

"2024-06-03 16:55:13.475 INFO 1 --- [http-
nio-18673-exec-4] i.s.LoggingAspect: Entering 
in Method: Entering in Method: payDifference, 
Class: 
inside_payment.service.InsidePaymentService
Impl, Arguments: [price=27.5, …]"

2024-06-03 18:50:40.085 INFO   1 --- [http-
nio-18886-exec-10] r.s.LoggingAspect: 
Entering in Method: updateOrder, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId= 9115, …, 
status=3,price=27.5)]"

"2024-06-03 15:55:00.115 INFO 1 --- [http-
nio-18886-exec-10] Entering in Method: 
rebook, Class: 
rebook.service.RebookServiceImpl, 
Arguments: [RebookInfo(orderId=9115, 
oldTripId=D1345, tripId=D1345, …, status=1,
orderMoneyDifference=27.5)]"

INV: ∀ S, S.orderMoneyDifference == S.price INV: ∀ S, S. orderMoneyDifference > 0 → 
e.payDifference

Other logs… … Other logs… …

Other logs… …

Other logs… …

Other logs… …

Other logs… … Other logs… …

Other logs… …

Figure 1: A motivating example showing how the backend anomalies can happen when a curious user (or attacker) explores and
modifies the frontend code. The example is taken from the scenario of rebooking a ticket to pay extra price in the TrainTicket
system. The difference between the logs in the normal scenario and that in the attack scenario is very subtle. In Abnormal
Scenario 1 where the user avoids paying extra price by changing a variable in the frontend, the log difference is a change of
integer number (from 27.5 to 0, in red).

• Our extensive experiments show the precision and soundness
of the WebNorm. Specifically, WebNorm significantly reaches a
high accuracy on the ananomaly detection.

More of the tool videos and other materials are available at [38].

2 MOTIVATING EXAMPLE
Figure 1 shows the log examples, normal and abnormal, on a ticket
rebooking scenario in the TrainTicket system [54], a popular web
application used as benchmark for various DevOps tasks.
Normal Scenario. In such a ticket-rebooking scenario, a user can
change its reservation after he or she has booked a ticket. If the
new ticket has a different price, he or she need to pay extra price
(line 8-13). Otherwise, the system just update the order informa-
tion without charging the user with extra payment. As showed in
the Figure 1, the frontend code can be summarized into three steps
(in red circules):

• Step 1: Load Price (Backend to Frontend). The system loads
the price information and send the calculated extra price to the
frontend.
• Step 2: Payment (optional, Frontend to Backend). The fron-
tend check whether the extra price is larger than 0. If yes, it
invokes the payment service, asking the user to accomplish the
additional payment.
• Step 3: Update Order Information (Frontend to Backend).
The system update the rebooking information (including the
extra price information) in the system.

In Figure 1, each interaction between the frontend and the back-
end derives a log at the backend.We can see that the detailed rebook-
ing information is logged, including the order id (i.e., orderId=9115),

trip id (i.e., tripID=D1345), extra price to pay (i.e., orderMoney-
Difference=27.5). 1 Next we illustrate how the logs can happen
when the curious user explores and modifies the frontend code to
avoid the extra payment.
Abnormal Scenario 1 (Tampered Data Consistency). The first
tamper can change line 8 in Figure 1 by setting the price of the extra
price to be 0 (i.e., res.data[‘differenceMoney‘]=0). In this case,
even if the payment service is invoked (line 9), the user still pays
no extra price. The resulted logs is showed in Figure 1, leaving the
logs very similar to that in normal scenario, expect that the price
parameter in the log is recorded as 0.
Abnormal Scenario 2 (Tampered Flow Consistency). The sec-
ond tamper can change line 5 in Figure 1 by setting the condition
in Javascript code (i.e., res.data[‘differenceMoney’] != 0). By
this means, the frontend code can no longer exercise the branch to
invoke the payment service. As a result, in comparison to the logs
in the normal scenario, the resulted logs in the backend miss one
log on invoking the payment service.
Challenges. The above examples render very high similarity be-
tween logs in normal and abnormal scenarios. Their discriminative
features can involve either very detailed parameter value such as
price=0 and orderMoneyDifference=27.5, or the existence of
log flows conditioned on the evaluation of specific parameter such
as whether the parameter price is larger than 0. Those features
is domain-specific and logical. Even worse, there could be many
logs happen in between those steps, which incurs a long context
between critical events. All the above incur great challenges for

1We will discuss how we address the observability challenges in generating the logs
via program analysis in Section 3.1
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Training Log
Sequence

Event Graph
Backend

Frontend

Testing Scenario 
Selection

Instrumented 
Backend

Application-specific
Instrumentation

Tests/Seeds

Event Graph 
Construction

Log 
Collection

Constraint Learning

Flow Constraint 
Learning

Data Constraint 
Learning

Common Sense 
Learning

Log Constraints

LLM

Running
(with instrumented 

version) Testing Log 
Sequence

Consistency 
Verification

Run-time 
Anomaly

Web 
Application

Learning Phase

Deployment Phase

Figure 2: Overview of the design of WebNorm, which extracts the log normalities as first-order logic constraints in the learning
phase. The log constraints are used to validate the runtime logs in the deployment phase.

any inductive approach, for example, to learn a deep (language)
model in either supervised or unsupervised way.
Solution and its Rationale. In this work, we propose WebNorm
to learn logical normality to infer the abnormalities, based on the
expected data consistency, flow consistency, and common-sense con-
sistency when the web application is operating, which is more
deductive approach in comparison to the state-of-the-arts. Our ap-
proach consists of a learning phase and a deployment phase. By
mapping the static code and their derived logs, WebNorm learns the
potential relation between the parameters across different logs. The
code analysis allows us to associate the logs (and their events) even
if there are a large number of logs happen in-between them. For
example, we can infer that the parameter orderMoneyDifference
(passed from the backend to the frontend) is semantically equivalent
to the parameter price (passed from the frontend to the backend).
In addition, we confirm with LLM on the potential consistency
relation between the parameters. As a result, we can build an in-
variant such as “∀𝑠, 𝑠 .𝑜𝑟𝑑𝑒𝑟𝑀𝑜𝑛𝑒𝑦𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑠 .𝑝𝑟𝑖𝑐𝑒” where 𝑠
is a rebooking session. Similarly, by building the conditional flow
consistency relationship between the frontend code and the back-
end logs in the learning phase, we can build an invariant such as
“∀𝑠, 𝑠 .𝑜𝑟𝑑𝑒𝑟𝑀𝑜𝑛𝑒𝑦𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒 > 0 → 𝑒.𝑝𝑎𝑦𝐷𝑖 𝑓 𝑓 𝑒𝑟𝑒𝑛𝑐𝑒”, indicat-
ing that a log event of paying extra price should happen if the
parameter orderMoneyDifference is greater than 0.

Note that, those invariants are learned for just once. Then, we
can validate the logs in the deployment phase. In addition, the
violation of the learned invariants can serve as both the alarm and
the explanation to facilitate the follow-up root cause analysis.

3 APPROACH
Figure 2 shows the overview of WebNorm to report runtime anom-
alies, consisting of a learning phase and a deployment phase. We
assume that a web application (especially in the industrial settings)
can have a set of representative (GUI) test cases (or seeds) to test its
normal functionalities. Thus, given a target web application, we run

Instrumented Logs (Rebook Service as an Example)

Input = RebookInfo (oldTripId=D1345, tripId=D1345, seat-
Type=2, date=2024-06-03)
API = Rebook.service.RebookServiceImpl
Output = Response (orderMoneyDifference=27.5)

Figure 3: An example of instrumented logs for the Rebook
API as an event, consisting of API name, and the runtime
valuation of the input and the output when it is called.

the (GUI) test cases against its instrumented version2 to collect the
raw logs (Log Collection). For necessary observability, we instru-
ment the application to capture the interaction between the web
components such as service, database, and frontend. Technically,
each called APIwith their runtime parameter values is instrumented
to record an event, as showed in Figure 3 (Application-specific
Instrumentation). As a result, one GUI test case can result in a
sequence of event as raw logs. Then, we analyze the source code
of both frontend and backend to link the relevant events by at-
taching the control and data flow to convert the event sequence
to an event graph (Event Graph Construction). Subsequently,
we parse the structured log information to derive a list of log con-
straints in the form of first-order logics (Constraint Learning).
Each log constraint can be translated to executable Python script to
detect and explain the runtime anomalies in the deployment phase
(Consistency Verification).

3.1 Event Graph Construction
An event graph captures a variety of relations between the events
of an operating web application. Formally, an event graph can be
defined as 𝐺 = ⟨𝐸𝑣𝑡, 𝑅⟩ where (1) each 𝑒 ∈ 𝐸𝑣𝑡 is an API call

2The implementation of instrumentation (e.g., AOP [3]) is transparent to the developers
of the target web application.
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: Server Request
POST travel2service/trips/left

insertRouteId

: Server Request
POST rebookservice/rebook

PUT price from price table GET price from price table

findByRouteId

Figure 4: The example of two database sharing events (𝑒𝑖 ⪯ 𝑒 𝑗 )

with runtime valuation of its input and output, and (2) each 𝑟 ∈ 𝑅
(𝑅 ← 𝐸𝑣𝑡 × 𝐸𝑣𝑡 ) is a relation defined between two events. Further,
we denote the set of input and output of an event 𝑒 as 𝑒.𝑖𝑛 and 𝑒.𝑜𝑢𝑡
respectively. For example, in Figure 3, the input is a RebookInfo
object (consisting of oldTripId, tridId, seatType, and date) and
the output is a Response object with the extra payment information
(i.e., orderMoneyDifference). We define three types of relations
as follows.
• DB Sharing: Given two events (i.e., API call), denoted as 𝑒𝑖 and
𝑒 𝑗 on an event sequence, we call 𝑒𝑖 and 𝑒 𝑗 have a relation of DB
sharing if 𝑒𝑖 writes a data item to DB and 𝑒 𝑗 query the DB for the
same data item, where 𝑒𝑖 ≺ 𝑒 𝑗 . Here, we use ≺ indicates the 𝑒𝑖
happens before 𝑒 𝑗 . The relation demonstrates that there could be
a read/written relation between these events.
• Data Transition: Given two events 𝑒𝑖 and 𝑒 𝑗 , we call 𝑒𝑖 and 𝑒 𝑗
have a relation of data transition if ∃𝑝 ∈ 𝑒𝑖 .𝑜𝑢𝑡, 𝑞 ∈ 𝑒 𝑗 .𝑖𝑛 (𝑒𝑖 ≺ 𝑒 𝑗 )
and 𝑝 = 𝑞 and there �𝑒𝑘 (𝑒𝑖 ≺ 𝑒𝑘 ≺ 𝑒 𝑗 ) so that ∃𝑥 ∈ 𝑒𝑘 .𝑜𝑢𝑡, 𝑞 ∈
𝑒 𝑗 .𝑖𝑛, 𝑥 = 𝑞.
• Trigger Condition: Given two events 𝑒𝑖 and 𝑒 𝑗 on an event
sequence, we call 𝑒𝑖 and 𝑒 𝑗 have a relation of trigger condition if
∃𝑝 ∈ 𝑒𝑖 .𝑖𝑛 can decide whether 𝑒 𝑗 can happen or not.

Metaphorically speaking, the relation of DB sharing and data tran-
sition is similar to the concept of data dependency in program
analysis. In contrast, the relation of trigger condition is similar to
that of control dependency. In this work, we conduct program anal-
ysis to parse the data and control dependency from the backend
code, and map the dependency relations to their corresponding
events on the logs. Note that, program analysis has its limitation
to achieve precise results. Therefore, we conduct may-analysis to
ensure that we can complete but unsound results. Based on the
potential relation, we extract more precise invariants by interacting
with LLM (see Section 3.2).
Shared Database Extraction. We first identify whether an event
is database-relevant by defining a list of DB library calls (e.g.,
JDBC [19], JPA with Hibernate [48], and Spring Data JPA [20]).
Then, given two events 𝑒𝑖 and 𝑒 𝑗 , we parse the calls by track-
ing whether they share a relation by tracking whether they are
processing a table column with the same name. For example, as
shown in Figure 4, there are two events calling different APIs,
i.e., 𝑒𝑖 = POST /api/v1/rebookservice/rebook and 𝑒 𝑗 =POST
/api/v1/travel2service/trips/left. Both events query from
the same table price, by insertRouteIds and findByRouteId re-
spectively. Note that, the table column name (i.e., price) accessed
by those services should be identical, ensuring the events query
the same database.

1 function loadArticle(userId , articleId) {

2 try {

3 const userInfo = getUserDetail(userId);

4 const articleContent = getPostDetail(articleId

);

5 // Check user 's role

6 if (userInfo.role === "Premium ") {

7 showContent(articleContent);

8 } else {

9 // Show the paywall or advertisement

10 showpaywall(mainPage);

11 }

12 }

Figure 5: A code example at the frontend on Nicefish

Data Transition Extraction. We first parse the backend code
into static data flow graph, where the nodes of API call are par-
ticularly labelled. Specifically, we denote the data flow graph as
𝐺𝑑 = ⟨𝐼 ,𝑉 , 𝑅,𝑊 ⟩ where each node 𝑛 ∈ 𝐼 represents a program
instruction, each node 𝑣 ∈ 𝑉 represents a local or global variable
defined or used in the program, each edge 𝑟 ∈ 𝑅 (𝑅 ← 𝑁 ×𝑉 ) rep-
resents that a read relation between an instruction and a variable,
and each edge𝑤 ∈𝑊 (𝑊 ← 𝑁 ×𝑉 ) represents that a write relation
between an instruction and a variable. Then, we map the those API
call nodes (or instruction) back to the raw event sequence. Note
that, each node in the event sequence is derived by executing an
API call. Assume that 𝑒𝑖 is mapped to an instruction node 𝑖𝑎 , 𝑒 𝑗 is
mapped to an instruction node 𝑖𝑏 . If ∃𝑣 ∈ 𝑉 so that (𝑖𝑎, 𝑣) ∈𝑊 and
(𝑖𝑏 , 𝑣) ∈ 𝑅, we build a data transition relation for 𝑒𝑖 and 𝑒 𝑗 .
Trigger Condition Extraction. We analyze the trigger condition
from the frontend code, to identify if an API call belongs to another
API’s trigger. For example, as shown in Figure 5, the output of
POST /api/v1/getUserInfo (i.e., userInfo.role) should serve
as a trigger condition to the API calls of POST /api/v1/show-
Context and POST /api/v1/showPaywall. To this end, we build
the link between the frontend code (i.e., ground truth workflow)
and the event sequence derived by its execution.

Given two event sequences 𝑠1 = ⟨getUserDetail, getPostDe-
tail, showPaywall⟩ and 𝑠2 = ⟨getUserDetail, getPostDetail,
showContent⟩, each derived by executing different branches in
the frontend code in Figure 5. Note that, for each event, we also
include its runtime parameters and values. Then, we compare 𝑠1,
𝑠2, and the frontend code snippets, to infer if there is a trigger
condition relationship between two events. We locate the code
snippets where the branch occurs and then use GPTs to determine
the trigger relationships between getUserInfo and showContent
or showPaywall. In this case, we can build the relation between
the event getUserDetail (with parameter role) and the event
showContent. By this means, we build the relation for any pairs
of the events in the sequence, as the event graph. Note that, those
coarse relations are the result of may-analysis.

3.2 Constraint Learning
Figure 6 shows how we parse event relations into executable invari-
ants with LLM for runtime validation. The process serves two goals,
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Table 1: The prompt template for generating data consistency invariants, the code (in red text) and the log samples (in blue
text) are to be filled.
<Background>:
You are a software engineer that is extremely good at modelling entity relationships in databases. You SHOULD first provide your step-by-step thinking for
solving the task. Your thought process should be enclosed using "<thought>" tag.
<Task>:
Here are the definition of two classes [A] and [B] :

Class [A] and its attributes: {class_definition1}

Class [B] and its attributes: {class_definition2}

Instances of both classes [A] and [B] can be found in these logs:

{log samples}

<Guidelines>:
Based on the logs, infer the possible relationships of attributes in [A] and [B] by referencing these common types of relationships: 1. Foreign key: an
attribute in an entity that references the primary key attribute in another entity, both attributes must be the same data type. 2. Primary key: attribute(s)
that can uniquely identify entities in an entity set. 3. Matching: an attribute(E.g: Price, ID) in an entity that must have the same value as an attribute in
another entity, both attributes must be the same data type. (E.g: Price, ID)
You SHOULD construct as many of the most important first-order logic constraints and output it in general format. Examples:
- ∀ x (isDog(x)← hasFourLegs(x)
- ∀ x (isPerson(x)← ∃ y (isDog(y) ∧ owns(x, y)))
- ∀ x ∃ y ((isParent(x, y) ∧ isMale(x))← isFather(x, y))
- ∃x (isHuman(x) ∧ loves(x, Mary))
- ∀ x (isStudent(x) ∧ studiesHard(x)← getsGoodGrades(x))
- ∀ x (isAnimal(x)← (∃ y (isFood(y) ∧ eats(x, y))))
Then, write a function that determines if instances of [A] and [B] are related to each other using their attributes.

<Few-shot Examples>:
def is_related(instance_A: dict, instance_B: dict) -> bool:
if instance_A.conditionA != instance_A.conditionB:
raise ValueError(’instance_A and instance_A should have the same condition A and B’)
return True

<Expected Results>: //to-be-generated results

LLM

System Prompt

Prompt Construction

User Prompt

1

2

first-order logics

LLM Response

Python function

Invariant 
Validation

Constraints

3

Environment
Feedback

Validation 
Passed?

Event Relations
(DB-sharing, 

data transition, trigger 
condition)

Refined Prompt

Figure 6: Constraint learning process of WebNorm, consist-
ing of event relation selection, invariant generation, and
invariant validation.

i.e., (1) relevant parameter discrimination and (2) invariant genera-
tion. As for parameter discrimination, given a subset of events (or
logs) annotated with a relation (e.g., DB-sharing, data transition,
or trigger condition), we use LLM to select the most relevant and
useful parameters in the event to construct the invariant of different
types (i.e., data consistency, flow consistency, and common-sense
consistency). As for the invariant generation, we adopt the practice

of chain-of-thought to derive the invariant in the form of both first-
order logics and Python script. The generated Python scripts are
used to run against the prompt-constructing logs to see whether
the scripts can parse them to be the normal logs. If not (because of
either the runtime exception or failed instances), we can refine the
prompt and ask LLM to regenerate the invariants. Note that, the
prompt-refining step can be regarded as few-shot learning for the
most fit Python script given a subset of events. Given a predefined
iteration number and a selected subset of logs, the prompt-refining
loops will either end up with a confirmed constraint, or report no
constraint for the log subset.
3.2.1 Constraint Types. Given that each event 𝑒 has its own cor-
responding API, we denote the API signature of 𝑒 as 𝑒.𝐴𝑃𝐼 (see
Figure 3 as an example), which is called as event type.
Data Consistency.We say there is a data consistency between
two event types 𝐴𝑃𝐼1 and 𝐴𝑃𝐼2 if ∀⟨𝑒𝑖 , 𝑒 𝑗 ⟩, 𝑒𝑖 ≺ 𝑒 𝑗 , 𝑒𝑖 .𝐴𝑃𝐼 = 𝐴𝑃𝐼1,
𝑒 𝑗 = 𝐴𝑃𝐼2, ∃𝑝 ∈ 𝑒𝑖 .𝑜𝑢𝑡, 𝑞 ∈ 𝑒 𝑗 .𝑖𝑛, so that 𝑣𝑎𝑙𝑢𝑒 (𝑝) = 𝑣𝑎𝑙𝑢𝑒 (𝑞). Here
𝑣𝑎𝑙𝑢𝑒 (.) is a valuation function to have the runtime value of a pa-
rameter. The data consistency is denoted as 𝐷𝐶 (𝐴𝑃𝐼1 (𝑝), 𝐴𝑃𝐼2 (𝑞)).
For example, in Figure 1, in all the events, we can observe that the
value of price and that of orderMoneyDifference always share
the same value in the normal scenarios.

Note that, the data consistency exists for those relations of type
DB-sharing or data transition relations.DB-sharing or data transition
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Agent Response

Given the attributes: <class attributes>
We can construct the following first-order logic constraints

def  is_related (A: dict , B: dict ) - > bool:
    if  A.get ( ' orderId ' ) != B.get ( ' orderId ' ): return  False
    if  A.get ( ' tripId ' ) != B.get ( ' tripId ' ): return  False
    return  True

Implement a function is_related that checks if instances of 
RebookInfo and PaymentInfo are related based on the identified 
attributes.

Figure 7: Data constraint prompt and an example of a agent-
environment interaction turn.

relations are defined on event instances, while the data consistency
relation is defined on event types. Further, the data consistency is
transitive because of the equality relation in its definition.
FlowConsistency.We say there isflow consistency between two
event types 𝐴𝑃𝐼1 and 𝐴𝑃𝐼2 if ∀⟨𝑒𝑖 , 𝑒 𝑗 ⟩, 𝑒𝑖 ≺ 𝑒 𝑗 , 𝑒𝑖 .𝐴𝑃𝐼 = 𝐴𝑃𝐼1, 𝑒 𝑗 =
𝐴𝑃𝐼2, ∃𝑐𝑜𝑛𝑑 as a condition defined on 𝑒𝑖 .𝑖𝑛 so that if 𝑐𝑜𝑛𝑑 (𝑒𝑖 .𝑖𝑛) =
𝑡𝑟𝑢𝑒 , 𝑒 𝑗 need to appear in the log sequence within 𝑘 events after 𝑒𝑖
appears. We denote it as 𝐹𝐶 (𝐴𝑃𝐼1, 𝐴𝑃𝐼2, 𝑘)
Common-sense Consistency.We say there is common-sense
consistency on an event type 𝐴𝑃𝐼 if ∀𝑒 , 𝑒.𝐴𝑃𝐼 = 𝐴𝑃𝐼 , ∃𝑐𝑜𝑛𝑑 as
a condition defined on 𝑒.𝑖𝑛 so that 𝑐𝑜𝑛𝑑 (𝑒.𝑖𝑛) is always true. We
denote it as 𝐶𝑆𝐶 (𝐴𝑃𝐼 ).

The above definition allows us to filter candidate sets of event
instances or event relations, which are potentially generated be-
cause of an invariant (of type of data consistency, flow consistency,
and common-sense consistency). We first narrow down the scope
of candidates by tracking their relation on event instances. Specifi-
cally, given a relation 𝑟 = ⟨𝑒𝑖 , 𝑒 𝑗 ⟩ (𝑒𝑖 ≺ 𝑒 𝑗 ), 𝑟 can only contribute to
learn data consistency if it is DB-sharing or data transition relation,
and learn flow consistency if it is condition trigger relation. Then,
we filter the candidate sets according to the above definition on
event types.

3.2.2 Prompt Construction to Generate Invariants. Then, we syn-
thesize different prompts for different types of invariants. Given
a candidate set, we parse its relevant code information and log
samples to fill in our pre-defined prompt template.

Table 1 shows our prompt template to generate data consistency
invariants.We adopt the practice of chain-of-thought and in-context
learning to derive both the first-order logic and a Python script. As
for the chain-of-thought design, we provide the step-wise thought
instruction (see <Background> in Table 1) and ask LLM to generate
the first-order logics followed by the Python scripts. As for the
in-context learning, we provide examples (of both first-order logics
and Python scripts) under a variety of scenarios to help LLM to
output the results following strict format. As a result, LLM can
output the response as showed in Figure 7.

Similarly, we construct prompt template for flow consistency and
common-sense consistency invariants as showed in Figure 8 and
Figure 9. In both figures, we use <> (e.g., <class attributes>) as
the placeholder to fill in relevant code and log information. Given

After calling <parent API>, the application flow can branch to A or B

Branch A: <branch A API> produces these logs: <logs A>

Branch B: <branch B API> produces these logs <logs B>

Based on the logs, identify variables that influence branching.

Next, construct first-order logic constraints with the variables.

Then, write a Python function
def is_branch_a(log: str) -> bool
that determines which branch a log belongs to. <code requirements>

Figure 8: Simplified prompt to generate flow consistency
invariants

Here is the code definition of a class: <class definition>

Instances of this class can be found in these logs: <logs>

Based on the logs, infer the valid values for each field by referencing 

these common types of data validation: <validation requirements>

Then, write a Python function 

def is_valid(instance: dict) -> bool
that determines if an instance of the class is valid (all fields have valid 

values). <code requirements>

Figure 9: Simplified prompt to generate common-sense con-
straints

the space limit, interested audience can refer to [38] for more de-
tailed prompt templates. As for the common-sense constraints, we
ask LLM to focus on the following perspectives:
• Presence check: important fields should not be empty (e.g., ID)
• Data Type Check: is the field a valid data type? (e.g., integer
for numbers)
• Code Check: does the value fall within a valid list of values?
(e.g., postal codes, country codes, NAICS industry codes)
• Range Check: does the value fall within a logical numerical
range? (e.g., temperature, latitude, price).
• Format Check: does the value follow a predefined format? (e.g.,
UUID, email, phone number, country codes).
• Consistency Check: are two or more values logically consistent
with each other? (e.g., delivery date must be after shipping date).
• Length Check: does the value contain a correct number of
characters? (e.g., password).

3.2.3 Invariant Refinement. To improve the quality of learned con-
straints and reduce hallucination, we design a test-driven approach
for the agent to self-correct its code iteratively. Given a candidate
set of events and relations 𝐶 , we divide it into 𝐶1 (for generating
invariants, similar to the concept of training dataset) and 𝐶2 (for
validating and correcting invariants, similar to the concept of test-
ing/validation dataset) where𝐶 = 𝐶1∪𝐶2. The LLM agent interacts
with the environment in a multi-turn setting, where the environ-
ment is a Python code interpreter equipped with a unit testing
toolkit. The agent submits the generated code to the environment
for testing.

We can translate𝐶2 to a set of test cases𝑇 . Then, ∀𝑡 ∈ 𝑇 , we run
𝑡 against the generated python script 𝑐𝑜𝑑𝑒 , to derive the runtime
message𝑚𝑠𝑔(𝑡). If any of the test cases have a failure message, we
append its failure message as a part of the prompt to ask LLM to
regenerate the results. In the meantime, we can have one more
element in 𝐶1 and one less in 𝐶2. Given a threshold 𝑡ℎ, we inter-
actively and iteratively run the procedure up to 𝑡ℎ times. We do
not generate any invariants if the budget of all 𝑡ℎ times are used
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up. Otherwise, we record the generated invariants as consistency
valuation rules in the deployment time.

4 EVALUATION
In this section, we aim to evaluate our WebNorm’s performance,
focusing on the following research questions.

• RQ1: How is the performance of WebNorm to detect attack-
triggered anomalies comparing to the state-of-the-art anomaly
detectors?
• RQ2: What is the cost of WebNorm to learn invariants and detect
anomalies?
• RQ3: Whether WebNorm provide accurate explanations to pint
point the root cause?
• RQ4: How does seed in the learning phase impact the perfor-
mance of WebNorm?

4.1 Experiment Setup
Baselines.We compareWebNormwith 6 state-of-the-art log-based
anomaly detectors (see Table 3) to evaluate the effectiveness of our
WebNorm. We show our implementations of our baseline methods
as follows and show the basic information in Table 3. Then, we select
the existing anomaly detection methods from the similarity-based
and deep-learning-based perspective. In the similarity-based ap-
proach, we select the recent proposed ReplicaWatch, which features
as a training-less method and detects anomalies in containerized
microservices. Their principle is to compare the similarity between
the microservice’s several replicas (i.e., sub microservices), and out-
put an alarm when the inconsistency within the internal replicas
reaches a certain threshold, highlighting a training-less manner.
To compare with this approaches, we regard the log from an API
function as a replica’s log, and follow the same threshold 0.5 in our
experiment, enabling the observation of performance in training-
free rational approaches. We also select five deep-learning based
approach, whose principle predicts the next normal events of a log
based on the previous events of a log.

These approaches are proposed from between 2017 to 2021. For
example, LogRobust [52], proposed in 2019, utilizes an attention-
based Bi-LSTM model to identify the varying importance between
different log events, providing robust anomaly detection in dynamic
log environments. Similarly, DeepLog [10] uses similar methodol-
ogy with the LSTM. LogAnomaly [35], proposed in 2019, shares
similar principle with the DeepLog. LogAnomaly treats a log as an
event sequence and considers the counts of different log events as
an additional feature. It adopts an LSTM model to learn sequential
and quantitative patterns. We follow the same parameter selection
as the open-source code [27].
Benchmark. Our evaluation is based on two real-world web appli-
cations, i.e., (1) one is TrainTicket v1.0.0 [54], a popular benchmark
used in many DevOps tasks and (2) the other is the digital services
platform NiceFish [37], which are commonly-used open-source
platform. To collect the training dataset for all the baselines, we
manually define 22 normal scenarios (i.e., seeds) in TrainTicket and
11 normal scenarios in NiceFish. Then we construct the testing
dataset (with both normal and abnormal logs). As for the normal
logs, we generate the normal scenarios by employing GPT-4 to
simulate user interactions based on different pre-defined tasks [55].

Table 2: The size of the evaluation logs in two platforms. All
training logs are normal logs. N refers to normal, A refers to
attack in seconds.

TrainTicket NiceFish

Training (N) Testing (N) Testing (A) Training (N) Testing (N) Testing (A)

183,232 72,611 892 74,288 34,555 318

Table 3: The description of baseline models.

Baseline Approach Year Model

Similarly Based 4 Replica 2024 Training-less

Deep Learning Based 5 LogRobust 2019 Bi-LSTM

NeuralLog 2019 Transformer

PLELog 2021 HDBSCAM+Cluster

DeepLog 2017 LSTM

LogAnomaly 2019 LSTM

As for the abnormal logs (i.e., attack logs), we refer to the litera-
ture [24] and the OWASP 3 to simulate the relevant attack scenarios
in two websites. Specifically, we simulate 43 attack scenarios in
TrainTicket and 14 scenarios in NiceFish. Table 2 shows the details
of our benchmark. More of the details (e.g., dataset, replication
package, and runtime configurations) are available at [38].

In the experiment, we employ the same sliding window (k=20) to
segment logs and feed them to train deep-learning-based baseline
models. In the similarity-based baseline models and our approach,
we input all logs, given that the LLM-agent-based and similarity-
based models can capture a log.
Evaluation metrics. We use the precision, recall, and F1-score to
measure the effectiveness of anomaly detection based on TP (True
Positive), FP (False Positive), and FN (False Negative).
• Precision: the percentage of anomalous logs out of all logs de-
tected as anomalies, represented as precision = 𝑇𝑃

𝑇𝑃+𝐹𝑃 .
• Recall: the percentage of all anomalous logs that are detected as
anomalies, represented as recall = 𝑇𝑃

𝑇𝑃+𝐹𝑁 .
• F1-Score: the harmonic mean of precision and recall, represented
as 𝐹1 = 2 · Precision·RecallPrecision+Recall .
Further, given an abnormal log (or event sequence) in the ground-

truth testing dataset, we can compare it with its normal version.
Note that, the abnormal logs are achieved by applying tamper
attacks. Then, we can manually compare the log difference with the
reported explanation. Thus, we calculate the explanation accuracy
rate by 𝑀

𝑁
, where𝑀 is the number of reported true anomalies and

𝑁 is the number of the true anomalies with the true explanation.

4.2 RQ1: The Effectiveness of WebNorm
Table 4 shows the results where we can find that WebNorm can
significantly outperform the baseline models. Overall, WebNorm
outperforms all the other approaches in terms of precision and
recall. We observe that all the baselines generally suffer from the
limited abstraction from logs and context of relevant events to
report the anomalies. Note that, many attack-triggered anomalies
render very subtle difference from the normal logs, which incurs
challenges for all the inductive solutions. In contrast, WebNorm is
3https://owasp.org/www-community/attacks/Web_Parameter_Tampering

https://owasp.org/www-community/attacks/Web_Parameter_Tampering
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Table 4: The effectiveness of WebNorm.

Approach TrainTicket NiceFish

F1 Precision Recall F1 Precision Recall

WebNorm 0.918 0.929 0.907 0.922 0.928 0.917

LogRobust 0.558 0.477 0.671 0.605 0.500 0.765

ReplicaWatcher 0.169 0.098 0.593 0.012 0.382 0.012

NeuralLog 0.103 0.522 0.057 0.042 0.772 0.022

PLELog 0.099 0.055 0.485 0.091 0.049 0.700

DeepLog 0.098 0.595 0.053 0.025 0.072 0.015

LogAnomaly 0.094 0.593 0.051 0.025 0.072 0.015

Table 5: The effectiveness of each scenario on TrainTicket.
Scenarios F1 Precision Recall

Data consistency 0.918 0.909 0.926

Flow consistency 0.930 0.933 0.928

Common sense consistency 0.906 0.945 0.867

Table 6: The total training and testing on TrainTicket in-
volved over 180,000 training logs and 70,000 testing logs.

Approach Training Time (s) Testing Time (s)

WebNorm 1050.1 21.6

LogRobust 407.1 0.4

ReplicaWatcher N/A 1.7

NeuralLog 165.0 31.8

PLELog 148.9 9.9

DeepLog 16.2 2.8

LogAnomaly 32.0 7.6

designed based on a deductive principle, which can well capture the
appropriate log granularity and is sensitive to the subtle changes
of the abnormal logs. Further, some anomalies are rendered in a
long context, in this sense, the program analysis can well capture
the relevant events even if there are a number of irrelevant events
happen in between.

Table 5 breaks down the detailed comparison in different consis-
tency-based invariants. We observe that WebNorm achieves the
best performance on detecting flow consistency. In addition, the
performance of WebNorm is still acceptable for generating the
common-sense consistency invariants.

We further investigate when WebNorm failed to report anom-
alies. When fed complex logs, the LLM fails to recognize critical
invariants, resulting in false negatives. Figure 10 presents a false
negative example during data constraints generation, with con-
straints correctly captured by the LLM in green, and those missed
in red. The problem arises when Event A’s log exceeds 3000 tokens,
and this extensive log is fed into the LLM. The excessive length
and complexity of the logs impede the LLM’s ability to extract all
relevant constraints. Specifically, the constraint requiring Event A’s
‘id‘ to match Event B’s ‘orderId‘ is overlooked, resulting in a false
negative during detection.

4.3 RQ2: Cost of WebNorm
In this experiment, the total cost of using third-party LLM API
services to learn all constraints in TrainTicket is $13.59 for parsing

Table 7: The overhead comparison on TrainTicket based on
over 180,000 logs.

Scenarios Num. Constraints Training Time Cost

Data consistency 31 648.81s $12.91

Flow consistency 10 108.14s $2.87

Common Sense consistency 24 293.15s $6.78

def is_related(instance_A: dict, instance_B: dict) -> bool:
# Check if the token and id in instance_A matches the 

authorization and OrderId in instance_B
if instance_A.get('token') != instance_B.get('authorization'):

raise ValueError('queryOrdersForRefresh and ticketCollect
should have the same token and authorization’)

if instance_A.get('id') != instance_B.get('OrderId'):
raise ValueError('queryOrdersForRefresh and ticketCollect

should have the same id and OrderId')
return True

def is_related(instance_A: dict, instance_B: dict) -> bool:
# Check if the token in instance_A matches the authorization 

in instance_B
if instance_A.get('token') != instance_B.get('authorization'):

raise ValueError('queryOrdersForRefresh and ticketCollect
should have the same token and authorization’)

return True

Other logs … …
2024-06-07 23:40:18.441 INFO   1 --- [http-nio-12386-exec-7] e.s.LoggingAspect: 
Entering in Method: ticketCollect, Class: execute.service.ExecuteServiceImpl, Arguments: 
[OrderId=c5a8c7b4-b62f-48ae-b50d-b38ea962f7dc, authorization=token1], 
Return: Response(msg: collect success)

2024-05-02 15:13:35.709 INFO   1 --- [http-nio-12031-exec-4] o.s.LoggingAspect: 
Entering in Method: queryOrdersForRefresh, Class: order.service.OrderServiceImpl, 
Arguments: [loginId=4d2a46c7-71cb-4cf1-b5bb-b68406d9da6f, token=token1],
Return: Response(Response(msg=Query Orders Success, 
orderList=[Order(id=c5a8c7b4-b62f-48ae-b50d-b38ea962f7dc, 
accountId=4d2a46c7-71cb-4cf1-b5bb-b68406d9da6f, boughtDate=2024-05-02 15:13:30, 
travelTime=2022-05-11 00:00:00, status=1, price=100.0), Order(id=c5a8c7b4-b62f-48ae-
b50d-b38ea962f7dc, accountId=4d2a46c7-71cb-4cf1-b5bb-b68406d9da6f, 
boughtDate=2024-05-02 15:13:30, travelTime=2022-05-11 00:00:00, status=0, 
price=100.0)…]) [Over 3000 tokens]

Excepted logic: INV: ∀ S, (S.token == S.authorization) ∧ (S.id == S.OrderId)

Generated logic: INV: ∀ S, S.token == S.authorization

Other logs … …

Figure 10: The false negative example: The generated code
fails to monitor the consistency between queryOrdersFor-
Refresh’s ‘id‘ and ticketcollect’s ‘orderId‘ due to the LLM’s
long-context limitation, which hinders capturing all relevant
constraints in complex logs.

183K logs (see Table 2). Note that, the cost is incurred only during
the learning phase. Table 6 and Table 7 further break down the
details of runtime overhead, computationally and financially. We
can see that, in comparison to the other consistency invariants,
the data consistency invariants makes more runtime overhead. In
general, it appears more often in the normal scenarios, which makes
us to feed more logs to LLM, incurring more failures (and iterations)
of the generated test cases.

Furthermore, we observe in Table 6 that the testing time is ac-
ceptable across these extremely large logs. Given that we only need
to train the LLM-agents only once that can be deployed, the training
time is acceptable in real-world settings, although it seems to take
a longer time in our learning approach.
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4.4 RQ3: The Explainablity of WebNorm
WebNorm is expected to perform more reasonable traces to the
developers. We show the performance of WebNorm’s explainability
in Table 8. We observe that WebNorm can overall locate the specific
abnormal events, providing a intuitive feedback to the developers.
For example, we can locate whether an event is triggered by the
admin, or locate the abnormal events of paydifference and rebook
and its suspicious relations, allowing the developers to directly look
into the relevant information about the tamper attacks, enabling to
make a quick response to these attacks. We observe that the false
explanation largely lies in a spurious correlation in the generated
Python code, indicating that passing all test cases does not neces-
sarily reveal the true root cause.In Figure 11, we present a failed
explanation case. Specifically, in the code, the condition change-
Time > travelTime results in status=0, which prevents the order
from being updated. However, status=0 could also be triggered by
other factors, such as attempting to modify an unpaid order. Thus,
solely monitoring status=0 creates a misleading conclusion, as it
does not accurately capture the underlying conditions governing
the application’s behavior. The normal logs in the figure illustrate
the expected system behavior: when changeTime > travelTime,
the order cannot be updated, and the system returns to the order
page. However, the generated constraint only focuses on monitor-
ing status=0, which fails to guide developers in identifying the
precise invariants.

4.5 RQ4: The Seed Coverage of WebNorm
Table 10 generally shows how the change of normal seeds can affect
the performance of WebNorm. While the precision keeps intact
when the normal seeds are reduced to 10%, 30%, 50%, 70%, and 90%
respectively. The recall is largely affected. Generally, those normal
seeds serve as the “training dataset” for generating the WebNorm
constraints and invariants. We suggest that the practitioners to
prepare more representative seeds to apply WebNorm.

5 RELATEDWORKS
In this section, we illustrate the relevant works about the detection
of tamper attacks on web applications. Existing detection meth-
ods generally rely on sequence-based manners [10, 17, 35, 49, 52],
which mainly assume the linear and sequential execution of events.
However, these approaches are not well-suited for detecting tamper
attacks in web applications. This is because web applications typ-
ically exhibit varying data and multiple operational flows, which
lack sequential events that can be specifically monitored. Here,
we mainly summarize two categories of tamper attacks and their
corresponding detection solutions.

Log-based Anomaly Detection. Many literature focus on dealing
with inferring models from systems’ execution logs [1, 4, 31, 40, 43,
45]. Wang et al. [47] use the sets of temporal invariants to distin-
guish the difference between the logs. Goldstein et al. [15] compare
the path of 2 logs then visulized the differences. 2kdiff [2] was the
first to incorporate log modeling into log analysis. Nonetheless,
the models developed by these works are coarse-grained, which
results in a detection precision that is inferior to that of WebNorm.
Besides, some literatures on program analysis [5, 12, 25] incorpo-
rate invariants into their models; in the context of microservices.

2024-06-02 19:04:03.811 INFO 1 --- [http-nio-12030-exec-8] r.s.LoggingAspect: Entering in 
Method: rebook, Class: rebook.service.RebookServiceImpl, Arguments: 
[RebookInfo(orderId=ea51cdaa-87d7-44a3-a281-8f9a3c89972e, ChangeTime = 2024-06-
02 19:04:02…)], Return: Response(status=0, msg=You can only change the ticket before the 
train start., data=null)"

2024-06-02 19:12:22.096 INFO   1 --- [http-nio-12347-exec-10] c.s.LoggingAspect: Entering in 
Method: [http-nio-12031-exec-4] o.s.LoggingAspect: Entering in Method: 
queryOrdersForRefresh, Arguments: [loginId=4d2a46c7-71cb-4cf1-b5bb-b68406d9da6f,…)]

def is_branch(log: str) -> bool:
if (datetime.strptime(change_time_str, "%Y-%m-%d %H:%M:%S") -

datetime.strptime(travel_time_str, "%Y-%m-%d %H:%M:%S")).total_seconds() 
> 0:

return True
else:

raise ValueError(f"should belong to payDifference or updateOrder
due to {change_time_str}>{travel_time_str}")

def is_branch(log: str) -> bool:
status = extract_rebook_status(log)
if status == 0:

return True
else:

raise ValueError(f“should belong to payDifference or updateOrder
due to status={status}")

Excepted logic: INV: ∀ S, S. change_time_str > travel_time_str → e. queryOrdersForRefresh

Generated logic: INV: ∀ S, S. status == 0 → e. queryOrdersForRefresh

“2024-05-02 16:01:08.607 INFO 1 --- [http-nio-12031-exec-10] o.s.LoggingAspect: Entering in 
Method: getOrderById, Class: order.service.OrderServiceImpl, Arguments: [OrderId=ea51cdaa-
87d7-44a3-a281-8f9a3c89972e], Return: Response(Order(.., travelTime=2024-06-02 
09:00:00, accountId=50d545f6-5735-4857-95b9-e09baf562ddc, …) 

if (!checkTime(order.getTravelDate(), ChangeTime)) {
// The user can only change the ticket before the train start.
return new Response<>(status=0); }

else if (orderstatus == OrderStatus.NOTPAID.getCode()) {
// The user haven‘t paid the ticket!
return new Response<>(status=0);}

Backend code

Frontend code

if res["status"] == 0) {
// queryOrdersForRefresh logic }

else {
// updateorder logic }

Other logs … …

Other logs … …

Other logs … …

Figure 11: The false explanation example: travelTime is the
key invariant for determining the next flow, not status. Sta-
tus=0 provides a spurious explanation, whereas the correct
constraint is travelTime must be less than changeTime.

But in microservices, the larger amount and complexity of logs
and invariants make it hard for these methods to track and ana-
lyze effectively. On the DevOps part, DeepTraLog [51] utilizes a
Graph Gated Neural Networks (GGNNs)-based deep SVDD [41]
model for identifying anomalies in both traces and corresponding
logs. SCWarn [53] utilizes multimodal learning from diverse, het-
erogeneous data sources to detect problematic software changes.
Khairi [21] proposed a training-less approach to resist run-time
replica faults.
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Table 8: The explainable examples for three constraints.

Constraints Event1 Event2 Relation Explanation Description

Rebook.service.
paydifference

Rebook.service.
rebook Event2 riggers Event1

Paydifference should be triggered
if differenceMoney
returned by rebook is positive.

Flow
Constraint User.service.

getAllUsers
Auth.service.
getToken Event2 triggers Event1

GetAllUsers should be triggered
if the role returned by getToken
equals admin.

Order.service.
queryOrdersForRefresh

Inside_payment.service.
pay Event2 transfer price to Event1 QueryOrdersForRefresh and

pay should have the same price

Data
Constraint contacts.service.

findContactsByAccountId
preserve.service.

preserve Event2 transfer ContactId to Event1
FindContactsByAccountId
and preserve should have the
same contactId

Common Sense
Constraint

Consign.service.
updateConsignRecord N.A N.A

UpdateConsignRecord’s
weight must be a
non-negative number

Table 9: TrainTicket’s explanation precision.

Explanation Precision

Data consistency 0.923

Flow consistency 0.875

Common Sense consistency 0.961

Table 10: TrainTicket’s seeds coverage impact on the result.

Seed Coverage 10% 30% 50% 70% 90%

Recall 0.367 0.559 0.752 0.838 0.902

Log Instrumentation. Current detection models are generally
based on log instrumentation. Yuan et al.[50] proposed the soft-
ware logging practices in large open-source software projects. Then,
based on an observation of seven open-source systems, Li et al. [28]
present a deep learning framework that automatically suggests log-
ging locations in source code. Liu et al. [30] propose an approach
to recommend logging variables for developers during software
development by learning from existing logging statements. Among
them, LANCE [32] is the most recent and valuable research, it uti-
lizes a Text-To-Text-Transfer-Transformer (T5) model [33] trained
on several Java projects to assist developers in instrumenting logs.
However, it has not been trained to run against our custom instru-
mented logs, so it cannot fully replace our existing instrumentation
rules.

Tamper Attack Detection. Data tamper attacks refer to that an
malicious web user modifies the client-side data, for example, the
database in the server-end neglect the price validation. To detect
such attacks, studies [42] always focus on detecting data tamper
attacks on E-Commerce Applications. Parameter tamper attacks
refer to that an malicious user manipulates the returned parameters,
responses from a client-side, for example, the server-end only con-
siders the positive or negative value of several returned parameter,
and ignores specific returned value like the pieces of the clothing
purchased. To detect such attacks, Bisht [6] proposed NoTamper
detection framework based on client-side javascript code analy-
sis techniques specialized to form validation code. Later, Bisht [7]
also optimized the NoTamper with the white-box manner. Khoda-
yari [22] also claimed the current Content Security Policy (CSP)
and Cross-Origin Opener Policy (COOP) defense strategies are not

sufficient to detect request hijacking attacks. Moreover, JSFlowTam-
per [24] and BFTDETECTOR [23] employ DOM monitoring for
flow tamper detection. However, these methods fail when there are
no significant DOM changes before and after the tamper attacks.
In contrast, our approach leverages instrumented logs to provide
comprehensive monitoring of web applications.

Many web applications suffer from the data and parameter tam-
per attacks simultaneously, which means that, only detecting one
kind of tamper attacks can still lead to serious financial losses. How-
ever, few works propose a detection method capable of detecting
both data and parameter tamper attacks. We, in this paper, for the
first time propose a comprehensive detection framework to system-
ically detect multiple tamper attacks in the run-time. By addressing
both data and parameter tamper attacks, organizations can signifi-
cantly reduce the risk of security breaches and financial losses in
their web applications architectures.

6 CONCLUSION AND FUTUREWORK
We introduce the WebNorm framework, designed to enhance ex-
isting microservice anomaly detection algorithms and generate
explanatory models for various anomalies. We demonstrate that
WebNorm is able to detect a range of network attacks and indus-
trial faults more effectively than other methods on the train-ticket
platform. Additionally, WebNorm allows for customizing rules for
log instrumentation within microservices. Our extensive experi-
ments indicate that WebNorm can improve existing microservice
detection frameworks, with rule-based logs effectively monitoring
internal microservice activities.

In future work, we plan to train a large language model tailored
explicitly for microservices to reduce false positives. Furthermore,
we aim to fully automate the generation of normal seeds, thereby
enabling the complete automation of the WebNorm system.
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